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ft la shown that dynamic systems with a manifold of steady motlona(*)poaseaa 
a series of features: the corresponding characteristic equation haa zero 
roots; for continuously acting and arbitrarily small disturbances, the motion 
takes place along this manifold; bifurcations are possible which me UnuSUal 

for Isolated states of equillbrlum.(**f. 
A considerable amount of literature Is devoted to the study of steady nw- 

tlona of dynamic systems with cyclic coordinates. The basic reaulta in this 
area are contained in the works by Routh [23, Klein and Sommerfeld 133, 
Whittaker f 43, Synge [5] and others. According to Whlttaker,a Steady motion 
la called such a motion of a system with cyclic coordinates for which the 
noncyclic coordinates a8 well as the velocitiea,correspondlng to cycUc co- 
ordinates, retain constant values. Routh, Whittaker and others have assumed 
that in studying the stability of steady motions,one can fully apply the me- 
thods which are used in studying the stability of isolated states of equlll- 
brlum. By virtue of thla,featurea asaoclated with the presence of a manifold 
of steady motions remained unlnveatlgated; the, fact itself regard- the non- 
Isolated character of steady states was polnted out by theae authors. 

In.the present paper it is shown that steady motlons form a manlfo~d of 
certain dimenalonallty which leads to the occurrence of a eerier of pecull- 
aritfea. These peculiarities express themselves by the presence of zer-o roots 
ln the characteristic equation,in the posalbllity of bifurcation of a new 
type, which cannot occur for an isolated atate of equilibrium, as well as in 
a special type of behavior of the system for eontlnuoualy aoting small dla- 
twlbarrcea. Same results of theoretical malysls are Illustrated wdth the aid 
of an example. 

1. llurifald of ate* motiona. Let qr ,ql, . . . , q, be the generalized co- 

ordinates of a holonomlc system with Lagrangian function 

l )Holonomlc system with m oycllc coorblnates gaeaeaaaa In the saneral ease 
a manifold of steady motions of’m dtmensiona. 

N)One of such bifurcations was lndlcated by Sahlinakil in paper El]. 
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once are cyclic. Let w consider a syaten with incomplete dissipation of me- 

chanical energy, for which the Raylelgh 

1, j=I 
doe8 not contain velocltles which correspond to cyclic coordinates. 

The motion of such a system 16 described by mean6 of equations 

d 8L - - = 0 
dt ao, 

Here 

Wk = q;n+k’ L = L (5% 
. 

. . ., q,, Ql , * * ., Q, 9 WI7 * ’ -7 o,_, > (l-3) 

Equation6 (1.2) de6crlbe the motion of the representative point in (ntm)- 

dlm6n8lonal apace i, along the ax66 of coordinate6 of which the quantities 

are measured 

By dcrinltlon, for steady motion 

qj = qj” = COnSt, Qj’ = 0, 6)k = ok0 = cod 

Consequently,a steady motion Is represented In space Q by a state of equl- 

llbrlum. Thu6, the problem of atability of steady motions Is reduced to the 

problem of stability of states of equilibrium In space #. It la apparent that 

equation6 

(j = 1, 2, I . ., nr) (I-4) 

represent a eyatem of m equations with respect to n unknowns qlO,...,q,o, 

(u1O,..., u),"-nl. In 66 much as m < n, It follows directly that in the general 

case we have a manifold of steady motion6 of dlmenelon n-m. 

Let u6 conrldcr now steady motions of a nonholonomlc system. Let the motion 

of the system just conaldered be limited by nonholonomic constraints, which 

are represented by I (L < n) equations of the form 

(s-1,2,. . .Z) (1.5) 
r=i 

ConBtrUCtlng the equations of motion of the system, we have now Instead 

(1.2) 

d -!?L $- i ILi$'- $ = 
dt dq; 

(j=l,. . .,m) 

i = 1 I 
-$ AsaRi 

s=i 

(1.6) 
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Here X,- are undertermined factors, L Is glVen by Equatinns (1.3). 

Equations (1.6) form a system of (n + L) equations for the determination of 

n + 4 quantities q1 , . . . ,q., wl,. . . ,w,_. , XI,. . . , A, aa functions of time. 

For steady motion g, c g ,O, q; = 0, UI~= yto, A, - ire . Substituting these 

valiies Into (1.6), we obtain the equations of steady motions of the nonholo- 

nomlc system 

which form a system of n + I equations for the determination of n + I quan- 

tities qlo,...q.O, 14~: . . . . a~,!,, A,“, . . ., X0,_, . However, not all of these 

equations ,are Independent, 
In fact, If the second equations (1.7) are multiplied, respectlve1y,by 

wk O and are then summed, then by virtue of the third equations (1.7) we ob- 

tain identically zero with respect to 1,‘. Consequently, at least one o il\ the 

equationa of the system (1.7) Is not Independent, i.e. the number of equa- 

tions for the determination of glo ,..., Q,', wlo,..., UI,~., A,',..., I,', Is, 

at least, one less than the number (n + I) of these quantities. 

Thus, both in the case of a holonomlc a8 well aa a nonholonomic OyzJtem, 

steady motions form a manifold & of some dlmenalonallty Q > 0, whereby In 

the case of the holonomlc ayetem q z n - m. 

Let us write down the oquatlona of motion of the aystem considered in the 

normal form 

Here xa indicate p 1, . . . , Q, , q; , . . . , I;, wl,. . . # UJ,,, A certain q-dlmen- 
slonal surface 0, , determined by equations 

xx = JaO (U,, U?, . . . , ?1 q 1 (1.9) 

corresponds to the manifold of steady motions in apace ), where ul,...,uCp are 

the running parameters of the surface .*> Along with the variables uI,. . . ,u, 
we Introduce new variables I+,. . .,v~+._~ by means of the relationa 

Here Yaa are srxne functions of the variables ul,. . . ,uq . 
able8 Equations (1.8) are written down In the form 

d”k dv 
-- 
dt 

qrk(U,U), -$=w4e 

In the new varl- 

(l.l?j 

We linearize equations of motion (1.11) in the vicinity of the surface 0,. 

*) We note that the manifold of steady motions may consist of several com- 
ponenta, which may be of varied dlmenalons . In this case 0, should be taken 
as one of the components of the manifold of steady motions. 
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~Xpandlng the right-hand sides of Equations (1.11) Into a series In terms of 

small quantities v~,vs,...,v,+,_,, we obtain 

d"k 
nfm--rl 

- = 
dt 

2 @kr (111, . . . , It,,) I’, $ 0 (11 u il’) 
P=l 

dv 
w+m---rl 

-! = 
dt 

7/ b,., (tt,, . . . ) IL,,) v, $- 0 (‘I v 11’) 
S---l 

(kz= 1,. . . ,q) 

(1.12) 

(r : - I ,...,n $m-q) 

Here O(ilull') indicates small terms not lower than of second order with 

respect to llvlj. From (1.12) It follows that for any arbitrary point of the 

surface 0, the characteristics equation has the form 

(1.13) 

where 6,. la fionecker's symbol, from where we Itmnedlately obtain P Zero 

roots. Thus, the number of zero roots of the characteristic eWatIOn Is not 

smaller than the dlmenslonalIty of the manifold of steady motions(*). 

8, mtha eirturburaa of rto*sotioaby l mll ooatlnuoualY rot* 

~oa8. For the purpose of studying the atablllty of Steady motions with 

reapeot to am11 disturbances of lnltlal conditions, In accordance with what 

wee aeld l bove, the theorem on asymptotic stability of the manifold of equl- 

librlum atetes can be applied, which was formulated In 161. 

According to this theorem, aaymptotlb stability of the manifold of steady 

motlona Ia Completely determined by the roots of Equation (1.13) without 
taking Into account Its q zero roots, 

fn order to stress the peculiarity, which is exhibited In disturbing 

the steady motion 'OY means of small continuously acting forces, we recall 

first the known PtBUlts Of the investigation of the behavior of a ayetern 

which Possesses an Isolated state of equilibrium [o]. 

Let the motion of the system be described by Equations 

(2.4 

Here 6, (t) are continuously acting disturbances, which are such 

that 16, (t)l < 6, h w ere 6 la a small positive quantity. Let us assume 

that at the point xr = x3 -. . .x, -0 we have an isolated state of equilibrium. 

In dcecrlblng the behavior of the bystem In the vicinity of the state 
of equilibrium we may single out the following cases. 

1. Stete of equlllbrlum la asymptotically stable In lintar approximation. 
In this ceae the real parts of all root8 of the characteristic equation are 

l ) The ceee when the number of zero roots of the charaoterlstlc equation 
Is larger than the dlwnrlonallty of the manifold of steady motloha should 
be conrldered es e special one. 
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negative and for arbitrary, sufficiently small disturbances 
the quantities Ix(t)l<c, whereby c-0, if 6-O. 

2. Critical case, brt stability Is asymptotic, i.e. the real Farts 
of some roots of the characteristic equation are equal to zero, however, 
thereexlstsa positive definite form V such that, b. virtue of the 
differential equations (2.1) where one has set a,,(1 
with respect to time dV/dt Is negative. 

P = Othe derivative 
In this case the behavior of the 

system l:_ the vicinity of the isolated state of equlllbrlum Is the same as 
In the previous case. 

3. Crltlcal case, but the stability Is not asymptotic. In this case 
for arbitrarily small continuously acting dIsturbancesthe representative 
point In the space (x, , . . ..x.) may recede from the origin of coordinates 
by a finite distance. 

Let us consider now the case of the disturbance of stationary motions. 

Let us note first that the presence of a q-dimensional manifold of steady 

motlone, and Is not at all a sign that we have to deal here with a 

critical case of the theory of stability, as this would be the case for an 

Isolated state of equilibrium. 

A study of the stability of steady motions 1s meaningful only with 

respect to small deviations from surface 0, of steady motions. Thereby 

it Is natural to Investigate the second group of Equations (1.12), lndepen- 

dently from the first group, temporarily treating the variables 1~1, . . . ,u( as 

parameters. 
Let us assume that In a certain region 0 of values ul,...,u, the state 

of equlllbrlum u1 =Ua-. . .=&,+.-9 -0 of the system of equations 

is asymp’stlcally stable, so that 

II u II <fiJ II u” /I @xp (-at) 
Here ~7 are the Initial values of the variables 

vr (r = 1, . . . , n + m - 41, Q >o, M<j-cm 

Let the initial values u’: , . . . ,ut ,?J! . . . rUon+.l be such that the values 

IA; , . . . ) ut lie within the region C of asymptotic stability of Equations (2.2), 

while the quantities i$, . . . ,vi+,, are sufficiently small; then, In accor- 

dance with the theorem co] on the asylnptotlc stability of the manifold of 

etates of equlllbrlum, by virtue of equation6 of motion (l.ll), the follow- 
ing limit relatlona are valid 

lim 0, (t) = 0, lim us(t) = u,* 
f-ctoo f-+-W 

Thereby for variables v,(t) we have the estimate 

I\ z’ (i) II < J!f’ II zJ” II QXP (- s’t) (s>c’>O, nr<+ 00) 

In the presence of an aeymptotlcally atable manifold of steady motlons 
there Is valid th? following theorem on the behavior of the system In the 

vicinity of this manifold for small continuously acting disturbances. 

Theorem, In the region G of aeymptotlc rtablllty of steady 
motions for arbitrary e~0 WC CM find such DO, that for arbitrary oontln- 

uourly aotlng dlrturbnnoes, rmaller than b, the phase point ar long ae its 
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u-components are In 0, does not leave the C-vicinity of the manifold of 

steady motions, and we can alwaye find such arbitrarily small continuously 
acting dlsturbancee, for which the phase point will be displaced on the aur- 

face of steady motions along an arbitrary prescribed curve In region G. 

From this theorem It follows, in particular, that the connecting branch 
of the manifold of eteedy motion8 Ie stable with respect to 8uffIcIently 

small continuously acting dleturbances, when all Its points belong to the 
region of asymptotic stability, and unstable, If this connecting branch 
contains a region of Instability. 

In the presence of continuously acting disturbances, the equations of 
motion In the vicinity of the manifold O9 of steady motion8 may be written 
in the form 

d”k 
x = Z”kr (“l. * . * 9 ua) v,. + o (11 u II”) f 6, (‘) (2.3) 

dv 
2 = Zb,, (U1’ * * * , U*) or + 0 (II 0 I?) + 6, ttl 

To prove the first assertion of the theorem, we use the funotlon of 
Llapunov [7] for the second group of Equations (2.3). In the region C there 
exists a positive quadratic $orm 

v (a II v II * d v B B II zJ II 9s a > 0, B<W) 
with coefficients, which depend on ul,, . .,ur , such that by virtue of (2.2), 

(a<+=) 

On the surface of steady motion8 VI0 and by virtue of equations (2.3) 

(2.4) 

From (2.4) It follows that 

dV/dt<O fa 2B6<IIvlj<1/2A (2.5) 

This means that for small 6 the phase point, whose notion 
desorlbed by will riot leave the 2Bb-VIoInity of the cur- 

oe of steady motions as long as the vullables ul,. . .,u, belong to the 
region U. Thus the first assertion of th& the- 
orem IS proved. 

To prove the seoond assertion, It 18 suffl- 
clent to establish the faot that one oan 8eleet 

II v II < M II vo II tF P<a’<N (2.6) 

end from the first 0 equrtionrr we find the re- 
quired dI8turbanoes 

n+m--_q 
61 W = al- 2 a,?V, - 0 (II 8 112), (2.7) 

r=1 
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n+m--_q 
6, (9 = - c =l;pr - 0 ( II v IF) ‘c’tz . 

By virtue of (2.6)) as 6, and 11~” 11 decrease, these disturbanaco nay bc 
made arbitrarily small. 

3. mal@OI notatiag plane ponuulum. Let ue oonslder the motion of a 
heavy axially-aymmetrlc body suspended from a plane hinge, which Ic fIxed 
In a vertical bcarIng (FIg.lj. Ye shall neglect the frlctlon In the bearing, 
while the friction In the hinge Is assumed to be vIscoua. Let 0 and q be 
the gcnerallud aoordlnatee of the system, C the axial moment of Inertia of 
the body, A the equatorial moment of Inertia with respect to the axIs of the 
suspension of the body, 1 the dllrtanoe from the axIs of the hIngc to the cen- 
ter of WE of the body, 111 the mass of the body, 0 the accclcratIon of grav- 
ity. We form the expresrions of the Lugrangian function L and the dissipation 
funotlon F: 

L = l/a [A (fP + r+~‘z sin* 0) f Cq’* co@ 01 + mg I cos 8, F = ‘/,h0’= 

where h Is the oocfflolent of viscous friction In the hinge. Let UEI Introduce 
the dImensIonlea quantities 

A-C h 
a=A, yfY&gz --(-l<a<l, P>O) 

Let ue write the equations of motion of the system 

$+a$- aoasin8cos8 +sinO=O,$ [ 0 (i - a cos* O)] = 0 (3.1) 

The equation of steady motion Is of the form 

(cmscos9 - 1) sin0 = 0 (3.21 

It follow6 from here that the’lwifold of steady mtione Is one-dlmen- 
rlonal and 1s oomposed of three bramherr 1) e-0, 2) e= II, 3) &ooaB-1. 
SInoe Orem, & *, we let a-# ud InvertIgate the first quadrant of the 
plrna (Cl,@). As ti&e parameter a varies from -1 to +I, the third branchObcrT 
In the region *@WV, a8 a- -0, rcocderr into inU.nlty and then, for 
appears from Infinity In the rcglon 04&. To IaverrtIgate the PB - atabl Ity of 
the branches of steady motions we form the oharaateristlo equation of the 
sys tam 

P IW + BP -cc62 cos2e + cos8) (1 - cc cosa 9) + CGP sin’ 291 = 0 

The zero root Is due to the one-dImenaIonalIty of the manifold or steady 
motions. The stability of this manifold Is determIncd by the root8 of Bqua- 
tlon 

(I-tccos*9)(pS+~p-aPcos28+cos8)+aa0sint29=0 (3.3) 

Subetltutlng e-0, we obtain the oharaoterlstlo equation for the branch 1 

d+BP--QP+l=O 

From here It follows that for a<l, the branch 1 la aaymptotlcally eta- 
ble. In the cane when a<O. the branoh 1 Is always stable. For as0 the branch 
1 IS stable only In the r;gIcn fM_’ l 

Substituting the value B-w Into (3.3), we obtain the oharacterlatlc 
equation for branch 2. The oonditlon of l aymptotlo stability of branoh 2 is 
of the form Cm+l<O. Conecquently, In the oaae as0 the branoh 2 I8 alw I) un- stable, and In the care a<0 the branch 2 Is stable only In region -Ia -l, 

7 
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The characterlatlc equation for branch 3 Is 

(1 - a WY2 0)~’ + p (1 - a CIJS’ ())p j- (WC 0 -f Ja (‘OS 0) sin’ (1 II (al2 cc15 0 1) 

The condition of asymptotic stability of branch 3 is: sece+%coee>O. 
It follows from here that In the cane a>0 the branch 3 la always stable, 
while In the Case a<0 It Is unstable if lals1/3. For the value of a In re- 
gion -l<a<-l/3 a region of stability 
branch 3. Outside thle Interval of valuk of n, the branch 3 remains unatable. 

‘--I < SZ< I/i: Ia 1 -I appears on the 

The results obtained are shown on Fig. 
ble steady motlone, 

2, where little circles Indicate sta- 
and little crosses unstable motions. 

Fig. 2,a,b,c. 

,The study carried out Indicates that the case of bifurcation, which is 
analogQua to that noted by Ishllnskll [l] with the example of a rotating body 
suspended by a string, la also obtained for the case of a rotating plane pen- 
dulum for values of parameter a<0 In the region l/wlal<l, (eee fig.2c). 
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