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1t 1s shown that dynamic systems with a manifold of steady motions(*)possess
a series of features: the corresponding characteristic equation has zero
roots; for continuously acting and arbitrarily small disturbances,the motion
takes place along this manifold; bifurcations are possible which are unusual
for isclated states of equilibrium.(**),

A consideradble amount of literature is devoted to the study of steady mo~
tions of dynamic systems with cyclic coordinates. The basic results in this
area are contained in the works by Routh [2], Klein and Sommerfeld [3],
Whittaker [4], Synge [5] and others. According to Whittaker,a steady motion
is called such a motion of a system with ¢yclic coordinates for which the
noneyclic coordinates as well as the velocities,corresponding to cyclic co-
ordinates, retain constant values. Routh, Whittaker and others have assumed
that in studying the stabllity of steady motions,one can fully apply the me-
thods which are used in studying the stability of isolated states of equili-
brium. By virtue of this,features associated with the presence of a manifold
of steady motlons remained uninvestigated; the fact itself regarding the non-
isolated character of steady states was pointed out by these authors.

In the present paper 1t i1s shown thet steady motions form a manifold of
certain dimensionality which leads to the occurrence of a series of peculi-
arities. These peculiarities express themselves by the presence of zero roots
in the characteristic equation,in the possibllity of difurcation of & new
type, which cannot occur for an isolated state of equilibrium, as well as in
a speclal type of behavior of the system for continuously acting small dis~
turbances. Some results of theoretical analysis are illustrated with the aid
of an example.

1. Manifold of steady motions. ILet ¢;,7.,..., ¢, be the generalized co-
ordinates of a holonomic system with Lagranglan function

Lz L (Qh s e ey Qm; 91., ..oy Qm‘» Qm;x. o ey Qn) (m- <") (11)

Here » 1t & number of generalized coordinates, among which the last (n-m)

*)Holonomic system with m cycliec coordinates possesses. in the ¢eneral case
a manifold of steady motions of m dimensions. € ral

® )0ne of such bifurcations was indicated by Ishlinskii in paper f1].
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ones are cyclic. Let us consider a syatep with incomplete dissipation of me-
chanical energy, for which the Rayleigh

1 m
F=g 2 hilqn-.., gn)aq

i, j=1
does not contain velocities which correspond to cyclic coordinates.
The motion of such a system 1s described by means of equations

d oL , <« . oL d oL F=1,2...m
Tzaq;"l'glhiﬂi—@.’ th“aTo'k'=O (k=1,...,n—m) 1.2)

Here

m}i:q;?l'f-)\" L:L'(ql,...,qm, ql',...,qm,ml,...,(ﬂn_m) (1.3)

Equations (1.2) describe the motion of the representative point in (n+m)-
dimensional space &, along the axes of coordinates of which the quantities
are measured

th%---:qm, Q1)-'~yq"1y0)1,---,mﬂ-m

By definition, for steady motion
g; = g = const, gi =0, o = ©F° = const

Consequently,a steady motion is represented in space § by a state of equi-
1idbrium. Thus, the problem of stability of steady motions is reduced to the
problem of stability of states of equilibrium 1in space ¢. It is apparent that
equations

aL/anIO (i:172v"'»nl) (1.4)

represent a system of m equations with respect to n unknowns ¢,°,...,¢.°,
°,..., w,°-m. In as much aa m < n, it follows directly that in the general
case we have a manifold of steady motions of dimension n-m.

Let us consider now steady motions of a nonholonomic system. Let the motion
of the system just considered be limited by nonholonomic constraints, which

are represented by £ (£ < n) equations of the form
n

D oaw(try--0q,)q, =0 (s=1,2,...1) (1.9)

r=1
Constructing the equations of motion of the system, we have now instead
of (1.2)

m i

d oL 4 LG :
ar og; + 21 By —57;_'2 . (=1 ..0om)
i=1 s=1
l
d L _ \u
F 2_, Aelle, mek (k=1,...,n —m)
5=l (1.6)
m n—m

2 asj(/j. + kgl @@ = 0 (s=1,....1)

=1
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Here A,— are undertermined factors, L 1s given by Equations (1.3).
Equations (1.6) form a system of (n + £) equations for the determination of
n + £ quantities ¢y ,...,¢0s WyseeesWuons Ayseees A, 88 functions of time,

For steady motion ¢,= ¢,°, ¢} = 0, w,= #,°, A, = A,°. Substituting these
values into (1.6), we obtain the equations of steady motions of the nonholo-
nomic system

?)g + 31 }"soasj = {}, E }"Soas,rmk = 07 \‘, Ns,m+;.-(l);,«° =0 “7)
i = -

which form a system of n + £ egquations for the determination of n + £ quan-
tities ¢,%,...¢.%, w3S.eee, w22, 219...,A%, s . However, not all of these
equations are independent.

In fact, if the second equations (1.7) are multiplied, respectively,by
w,° and are then summed, then by virtue of the third equations (1.7) we ob-
tain identically zero with respect to 1,°. Consequently, at least one of the
equations of the system {1.7) 1s not independent, i.e. the number of equa~
tions for the determination of ¢,°%,...,8.%; w1%, ..o, w20, L%, .00, A%, 18,
at least, one less than the number (n + £) of these quantities.

Thus, both in the case of & holonomic as well as a nonholonomic system,
steady motions form a manifold 0, of some dimensionality ¢ > 0, whereby in
the case of the holonomic systemg =27n —m.

Let us write down the 2quations of motion of the system considered in the
normal form

dzx

a

Ti?zfa(?tl’-l'i';---;xn-ran) (=1, ...,n+m (18)

Here z, indicate ¢,,..., @3, @i5+ces Qs Wy,se00y W,y A certain g-dimen-
sional surface 0,, determined by equations
Ty = Ta® (Uyy Ugy + o vy Uy) (1.9)

corresponds to the manifold of steady motions in space ¢, where u,,...,u, are
the running parameters of the surface.*) Along with the variables Upseoerl
we introduce new variables U;,...,Vp4us.q DY means of the relations

n4-m-—q

Zo = 2" (Ury o+, 10,) + 32 Yap (Ury v oo, 1) 0B (1.10)

Here Ya3 are same functions of the variables u,,...,u,. In the new vari-
ables Equations (1.8) are written down in the form

duy, dv, . T
—EF = gk (u, v), -f?[ - hr (u: 1/) (1'1")

We linearize equations of motion (1.11) in the vicinity of the surface 0, .

*) We note that the manifold of steady motions may consist of several com-
ponents, which may be of varied dimensions . In this case 0, should be taken
as one of the components of the manifold of steady motions.
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Expanding the right-hand sides of Equations (1.11) 1imto a serles 1in terms of
small quantities v, ,Ug,...,V,,a_, W€ Obtain

n+m—q

d
-;; = 2 Qi Uy, -5 u) 0, + O (V) (k:=1,...,9)
r==1
(1.12)
dU nMm-—rt

d—tr = Z brs (e ooy i) v+ O (0 ) (r == 1yeeyt 10 —q)

§=1
” v W"‘ == 0,* —+ o2 + ...+ U-nfm-;

Here 0(|[¢[|®) indicates small terms not lower than of second order with
respect to [[v]|. Prom (1.12) it follows that for any arbitrary point of the
surface 0, the characteristics equation has the form

I)q|brs—p6rs[::0 (113)

where §,, is Kronecker’s symbol, from where we immediately obtaln ¢ zero
roots., Thus, the number of zero roots of the characteristic equation 1s not
smaller than the dimensionality of the manifold of steady motions(*).

2. On the disturbance of steady motion dy small continuocusly aoting
feroes. Por the purpose of studying the stability of steady motions with
respect to small disturbances of initial conditions, in accordance with what
was sald above, the theorem on asymptotic stability of the manifold of equi-
1ibrium states can be applied, which was formulated in [6].

According to this theorem, asymptotié stability of the manifold of steady
motions is completely determined by the roots of Equation (1.13) without
taking into account its ¢ zero roots.

In order to stress the pecullarity, which i1s exhibited in disturbing
the steady motion ry means of small continuously acting forces, we recall
first the known results of the investigation of the behavior of a system
which possesses an isolated state of equilibrium [8].

Let the motion of the system be described by Equations

d
V;;Eu:fa(‘rhx%"'l'r‘n)—*—aﬂ(t) (1:: ,...,Il) (21)

Here &, (1) are continuously acting disturbances, which are such
that |8, ()| < 0, where & 1s a small pcsitive quantity. Let us assume
that at the point xy= X, =.,.x,=0 we have an 1solated state of equilibrium.

In describing the behavior of the system in the vicinity of the state
of equilidrium we may single out the following cases.

1. State of equilibrium is asymptotically stable in linear approximation.
In this case the real parts of all roots of the characteristic equation are

#) The case when the number of zero roots of the characteristic equation
is larger than the dimensionality of the manifold of steady motions should
be considered as s special one.
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negatise and for arbitrary, sufficiently small disturbances
the quantities |x(¢)[<e, whereby e~0, if &~0.

2. Critical case, bit stability is asymptotic, i.e. the real parts
of some roots of the characteristic equation are equal to zero, however,
there exists a positive definite form ¥ such that, by virtue of the
differential equations (2.1) where one has set 6,(1y== 0 the derivative
with respect to time dV/Ht is negative. 1n this case the behavior of the
system 3., the vicinity of the isolated state of equilibrium is the same as

in the previous case.

3. Critical case, but the stablility 1s not asymptotic. In this case
for arbitrarily small continuously acting disturbances the representative
point in the space (x,,...,x,) may recede from the origin of coordinates

by a finite distance.

Let us consider now the case of the disturbance of stationary motions.
Let us note first that the presence of a ¢-dimensional manifold of steady
motions, and 1s not at all a sign that we have to deal here with a
critical case of the theory of stabllity, as this would be the case for an
isolated state of equilibrium.

A study of the stability of steady motions 1s meaningful only with
respect to small deviations from surface 0, of steady motions. Thereby
it 1s natural to investigate the second group of Equations (1.12), indepen-
dently from the first group, temporarily treating the variables ui,...,u, a8
parameters.

Let us assume that in a certaln region ¢ of values u,,...,4, the state
of equilibrium v, =U,w,,.=l,,,-,=0 of the system of equations

dv n+m—q
7"-———' Z [/ (7P TH AR r=1,...,04m-—gq) (2.2)
$=1
is asymp*otically stable, so that
lol <Ml v°| exp (—ot)
Here ¢ are the initial values of the variables
o (r=1, ..., n+m-—gq, >0, M+ oo

Let the initial values u},...,ud,v9...,U° ,aey De 8uch that the values
) ,... 4] lie within the region ¢ of asymptotic stability of Equations (2.2),
while the quantities v?,...,vﬁ..., are sufficlently small; then, in accor—
dance with the theorem [®] on the asymptotic stability of the manifold of
states of equilibrium, by virtue of equatione of motion (1.11), the follow-
ing limit relations are valid

lim »,.(t) =0, lim u,(t) = u,*
{440 t—-+00
Thereby for variables v, (¢) we have the estimate

v () <M’ [[v°]exp (—5t) (3> >0, M < + o)

In the presence of an asymptotically stabl.: manifold of steady motions
there 1s valid ‘re following theorem on the behavior of the system in the
vieinity of thie manifold for small continuously acting disturbances.

Theorem, In the region ¢ of asymptotic stabllity of steady
motions for arbitrary ¢>0 we can find such 56>0, that for arbitrary contin-
uously acting disturbances, smaller than &, the phase point as long as its
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u-components are in G, does not leave the €-vicinity of the manifold of
steady motions, and we can alwaye find such arbitrarily small continuously
acting disturbances, for which the phase point will be diaplaced on the sur-
face of steady motions &long an arbitrary prescribed curve in region G.

From this theorem it follows, in particular, that the connecting branch
of the manifold of steady motions is stable with respect to sufficlently
small continuously acting disturbances, when all its points belong to the
region of asymptotic stability, and unstable, if this connecting branch
contains a region of instability.

In the presence of continuously acting disturbdbances, the equations of
motion in the vieinity of the manifold 0, of steady motions may be written
in the form

du, R

=5 = Zay, (g, - w7, O (19 [P) + 8 (1) (2.3)
dv

a0 = by (g oy u) 2, + O (2[R +8,(1)

To prove the first assertion of the theorem, we use the function of
Liapunov [7] for the second group of Equations (2.3). In the region G there
exists a positive quadratic form

Vielzl* <V<Blzl? a>0, plo)
with coefficients, which depend on u,,...,4,, such that by virtue of (2.2),

q
av e av a
="V N |G| <ol @<i e
k=1
On the surface of steady motions V=0 and by virtue of equations (2.3)

%<_||v|F+A||vIP+Bﬂv”5

(2.4)
B=sup {811 16,() )
Prom (2.4) it follows that
AV /At L0 tor 2BSL ||| <1/ 24 (2.5)

This means that for sufficiently small & the phase point, whose motion

is desoribed by Equations 2.3?, wtgl uotilggve the 256~v131?1ey gt :Re sur-
ady motions as long as e variables u,,...,% elong to the

face of steady :Esion ¢. Thus the ri?ét assertion of the the-

orem is proved.

To prove the second assertion, 1t i1s suffi-
cient to establish the fact that one can select
arbitrarily small disturbances for which the
quantity u, will inorease all the time, while
the remaining variables u »-2,26. .»4) retain
constant vatues, Let &, (t)=0, ug (k- sevsals
g=1,...,n#m-1) and u,=8,>0; then from (2.3) for
v, it followsa:

lol< Mz (0<e <o) (2.6)
and from the first ¢ equations we find the re-
quired disturbdances

n-t+m—q
h)=8— I a,v,—0(2p), 2.7

r=1
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nt+m—q (2.7)
§y=— 3 a,z,—0vP cont.
r=1

By virtue of (2.6), as 6, and ||v°|| decrease, these disturbances may be
made arbitrarily small.

3. Example: Rotating plane pendulum. Let us consider the motion of a
heavy axially-symmetric body, suspended from & plane hinge, which is fixed
in a vertical dbearing (Fig.lsl. We shall neglect the friction in the bearing,
while the friction in the hinge 1s assumed to be viscous. Let 6 and ¢ be
the generalized coordinates of the system, ¢ the axial moment of inertia of
the body, 4 the equatorial moment of inertia with respect to the axis of the
suspension of the body, £ the distance from the axis of the hinge to the cen-
ter of mass of the body, m the mass of the body, ¢ the acceleration of grav-
%ty.tiile r;m the expressions of the Lagrangian function L and the dissipation
unction F:

L =1/, [A (8? + ¢ sin? 8) 4 C¢™ cos? 6] 4 mg I cos O, F = 1/4h67

where h 1s the coefficient of viscous friction in the hinge. Let us introduce
the dimensionless quantities

Y A-C h
=) e=T5,  B=gm=(—1<a<1B>0)

Let us write the equations of motion of the system

d*0

rr + Bj—g-—— a? sin 8 cos 0 + sin® = 0, 'di-r' [@(1 —acos*0)] =0 (3.1)

The equation of steady motion is of the form
(aw3cos® — 1) sin 8 =0 (3.2)

It follows from here that the manifold of steady motions is one-dimen-
sional and is composed of three branches: 1) ¢w0, 2) g= nw, 3) aw®cosd=1.
Since 0sosn, Osu’<s, we let Nww® and investigate the first quadrant of the
plane (0,8). As the parameter a varies from -1 to +1, the third branch being
in the region #m<@sn, as g~ —O, recedes into infinity and then, for g>0, re-
appears from infinity in the region Osecgn. To investigate the stability of
the branches of steady motions we form the characteristic equation of the
system

P (P2 + Bp — a cos 20 4 cos 0) (1 — a cos® 8) + &30 sin? 26] = 0

The zero root is due to the one-~dimensionality of the manifold of steady
motions. The stability of this manifold is determined by the roots of Equa-
tion

(4 —acos?0) (p®+ Pp —a cos 20 - cos 0) + a2QR sin220 =0 (3.3)

Substituting 6=0, we obtain the characteristic equation for the branch 1
P+pp—a+1=0

From here 1t follows that for afi<l, the branch 1 is asymptotically sta-
ble. In the case when a<0, the branch 1 is always stable. For a>0 the branch
11is ;t:b%:tonly in the regicn (<q~?

ubstituting the value 6=n into (3.3), we obtain the characterist
eguation for branch 2. The condition of asymptotic stability of bra.ncrixce is
of the form afl+1<0, Consequently, in the oase az0 the branch 2 1s always un-
stable, and in the case q<O the branch 2 is stable only in region >|q|=?.
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The characteristic equation for branch 3 is
(I —acos?0)p 4 B (I —acos?0)p 4 (sec O - 3a cos 0) sin* 0 = 0 (&L cos ) 1

The condition of asymptotic stability of branch 3 1s: seco+3acose>0.
It follows from here that in the case a>0 the branch 3 is always stable,
while in the case a<O it 1s unstable if |a|<1/3. For the value of a in re-
glon -1<a<-1/3 a region of stability ot <:Sz<:l/3[a|" appears on the
branch 3. Outside this interval of values of (I, the branch 3 remains unstable.
The results obtained are shown on Plg. 2, where little circles indicate sta-
ble steady motions, and little crosses unstable motions,

I& a>0 lo o<y |disys g A< t<jal<r
n P b/ RO-0-0-0-0-0~-0-0-0-0-0-CC:
(¥
/e { k‘""%a—x-—x-x-n—»x-
—2- . S P e B
I o’
[o4]

Pig. 2,a,b,c.

Jhe study carried out indicates that the case of bifurcation, which is
analogous to that noted by Ishlinskii [1] with the example of a rotating body
suspended by a string, is also obtained for the case of a rotating plane pen-
dulum for values of parameter g<O in the region 1/3<|a|<l, (see fig.2c).
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